
CSIM's General Blocks Library

Jan 2017

Outline

 History
 Why General Blocks?
 Advantages
 Disadvantages
 Status
 Library Description
 Example simulations

History

The General Blocks library was developed
as a replacement for BONeS (Block
Oriented Network Simulator)
 BONeS was developed at the University of Kansas,

and was commercially available from ~1988-1999
(Comdisco/Alta/CADence)

 BONeS was used by a significant community
 The General Blocks library was initially developed

1999-2002. Significant enhancements have
occurred since, and are ongoing.

Why Use General Blocks?

Advantages of the General Blocks library
 Ability to leverage significant residual BONeS

expertise, compare known results
 The block oriented approach (>330 mostly small,

simple blocks) enables fine granularity in
architecture definition and tracing

 Extremely flexible; can easily implement new
modules that would be more difficult in other model
libraries

Advantages
 Sophisticated models for server resources

 Priority, preemption, round robin
 Popups provide message details for selected blocks
 Extremely flexible mechanism for representing

messages (data_structs.txt)
 Minimum need to become involved with C code
 Many built-in statistical models and display

mechanisms
 Significant upgrades recently to help accelerate the

initial design/debug cycle
 Useful for modeling data-processing systems, or

other systems (ex. not signal processing), not
covered by DFG modeling methods.

Disadvantages

 Does not inherently separate hardware from
software
 Cannot use DFG (Data Flow Graph) Schedulers.

 Can be computationally inefficient for large
models (flip side of flexible)

 Oriented toward static topologies
 Not specialized for modelling specific kinds of
systems.

CSIM: an Open Architecture Tool

CSIM is based upon a “toolbox” approach
 “CSIM” is actually the assembly of many
independent tools and libraries; it is not a
monolithic (“stovepipe”) chunk of code

 The key independent tools/libraries include:
 CSIM precompiler
 CSIM kernel library
 GUI
 Simview
 XGraph
 NumUtils, general_utils
 The Model Libraries

CSIM: an Open Architecture Tool

CSIM is based upon a “toolbox” approach
 CSIM leverages the existence of available
applications, tools, utilities and standards
 Minimizes CSIM-specific development, maintenance

and documentation (“avoid re-inventing the wheel”)
 Examples of applications/tools/libraries leveraged

 Compilers (cc, gcc, etc.)
 Debuggers (gdb, ddd, etc.)
 Text editors (vi, emacs, wordpad, textedit, etc.)
 Libraries (C language, GTK, OpenGL, Motif, OTK, etc.)
 Graphical viewers/editors (xv, gimp, etc.)
 Data standards (xml, xpm, etc.)

Application

 Typically, the General Blocks Library is used to
model and simulate networked computer resources
to:
 Identify points of contention
 Estimate performance limits or bottlenecks
 Evaluate processor utilizations
 Evaluate system latencies
 etc.

 The types of outputs typically obtained include:
 Scatter plots, histograms and statistical measures

of latency data

Status

 The General Blocks library currently contains
more than 330 models in the following groups:
 * Arithmetic
 * Comparison
 * Conversions
 * Counters
 * Data Type Operations
 * Data Structure Access
 * Delays
 * Execution Control
 * File Access
 * Generators
 * Logical
 * Loops

 * Memory
 * Miscellaneous
 * Plot Generation
 * Quantity Shared Resource
 * Queues And Servers
 * Probes
 * Queues
 * Servers
 * Statistics
 * Switches
 * Timers
 * Traffic Generators

Most Recent Additions
 Additional models have been added to the library
 These new models include:

 Admin
 Append_Route_List
 Append_String
 Generic_Batcher
 Generic_UnBatcher
 LockRealTime
 Num_to_String
 PlotLive
 PortConvert
 QSR1
 QSR2
 Receiver
 Router
 Sender
 Switch_5way

General Blocks Library Devices
New_Models

 Generic_Batcher

 Generic_UnBatcher

 Receiver

 Sender

 PlotLive

 LockRealTime

 QSR1

 QSR2

 Switch_5way

Vectors

 VCreate

 Setup_VElem

 VLen

 Access_Vector

 GVCreate

 Setup_GVElem

 GVLen

 Access_GVector

Traffic_Generators

 Uniform_PulseTrain

 Poisson_PulseTrain

 Enabled_Uniform_PulseTrain

 Enabled_Poisson_PulseTrain

 Enabled_PulseTrain

 Arbitrary_PulseTrain

Timers

 Start_Timer

 Set_Alarm

 Service_Timer

 Residual_Time

 Reset_Timer

 Cancel_Timer

 Cancel_Alarm

 Alarm_Active

Switches

 True_N_Times

 T_GT_Startup

 T_GE_ParamSwitch_4way

 Switch

 Real_Within_Boundaries

 Rand_Switch_Param

 Rand_Switch

 R_LT_C

 R_LE_C

 R_GT_C

 R_GE_C

 R_EQ_C

 MemorySwitch

 I_LT_C

 I_LE_C

 I_GT_C

 I_GE_C

 I_EQ_C

 Enabled_Switch

 Bypass

Statistical

 WeightedMeanAndVariance

 Weighted_General_Moments

 Throughput

 Time_Average

 MeanAndVariance

 Histogram

 Global_Statistics

 General_Nth_Moment

 Find_Bin

 Dimensioned_Time_Average

 Dimensioned_Ensemble_Average

 Construct_TimeAverage_Stats

 Construct_Dimensioned_Stats

 Batch_Timing

 Batch_Statistics

 Batch_Rmin

 Batch_Rmax

 Batch_Mean

 Average

Server_Resource

 SR_Server_Utilization_Probe

 SR_Server_Utilization_Per_Priority_Probe

 SR_Server_Response_Probe

 SR_Server_Occupancy_Probe

 SR_Preempt_Server_Utilization_Probe

 SR_Preempt_Server_Utilization_Per_Priority_Probe

 SR_Preempt_Server_Response_Probe

 SR_Preempt_Server_Occupancy_Probe

 Set_Resource

 Set_Preempt_Resource

 Service_wRoundRobin

 Service_wPriority_Preemption

 Service_wPriority

QueuesAndServers

 FIFOwServers

 MultipleServers

 ParallelQueues

 PQwServers

Queues

 Simple_LIFO

 Simple_FIFO

 FIFOwPriority

 FIFO_wPeek

QuantityShared_Resource

 Set_QResource

 FreeBasic

 Free

 ConsumeResourceUnits

 ChangeCapacity

 AllocatePriority

 AllocateParam

 AllocateBasic

 Allocate

Probes

 WriteTnow

 ThroughputDelayProbe

 ThroughputVsTimeProbe

 TextualDescriptionProbe

 SystemLatencyProbe

 ScatterPlotZ

 ScatterPlotQ

 ScatterPlot

 SelectFieldProbe

 RealvsTimeProbe

 ProcessTimeLineProbe

 InsertStatFields

 HistogramProbeF2_F1

 HistogramProbe

 GenericProbe

 GenericHyperGraphProbe

 EventProbe_with_Comm

 EventProbe

 CreateCDFfileInit

 CreateCDFfileF2_F1

 CreateCDFfile

 BatchStatisticsProbe_f2_f1

 BatchStatisticsProbe

 BatchNthMomentProbe_f2_f1

 BatchNthMomentProbe

 BatchMeanProbe_f2_f1

 BatchMeanProbe

Plot_Generation

 BuildPlot_Ytime

 BuildPlot_Yonly

 BuildPlot_Y

 BuildPlot_XY

 BuildPlot

 BuildHistogram

Number_Generators

 UserCDF_RanGen

 UniformRangenParam

 UniformRangen

 U_0_to_1_RanGen

 TStop

 TNow

 Rconst

 PoissonRangenParam

 PoissonRangen

 N01_Rangen

 NormalRangen

 NormalRangenParam

 IU_Parem

 IU_NE_C

 IU_MinMax_Param

 IU_MinMax

 IU

 Iconst

 GammaRangenParam

 GammaRangen

 ExponRanGenParam

 ExponRanGen

 BinomialRangenParam

 BinomialRangen

Miscellaneous

 TimeBetweenTriggers

 SystemCall

 ServiceSetup

 Print_message

 PrintEnvelope

 Print_real

 Print_int

 Dijkstra

 Central_Utilities

 Ack_Setup

 General Blocks Library Devices II
 PromptFloat

 PopUpMessage

 Navigate_View

 MPGraph

 Hilite_Box

 GenericProbePopup

 ColorController

 ColorBox

 Button_box

File_Access

 WriteInfo_Numeric

 WriteFile_String

 WriteFile_Real

 WriteFile_Field

 WriteFile_AppendField

 WriteFile_Int

 ReadFile_String

 ReadFile_Real

 ReadFile_Line

 ReadFile_Int

 OpenFileWrite

 OpenFileRead

 OpenFileAppend

 CloseFile

Execution_Control

 Wrapup

 Terminate

 OneWay

 OnePulse

 Merge

 Init

 Gate_Switch

 Gate

 Execute_in_order_4

 Execute_in_order_3

 Execute_in_order

 Control_Signal_Generator

Counters

 UpDownCounterChangeValue

 UpDownCounter

 SimpleCounter

 Int_Accumulator

 GlobalCount

 Counter

 CircularCounter

 Accumulator

Conversions

 Truncate

 Round

 Int_to_Real

 Comparison

 StringEqualsParam

 Set_Equals

 R_LessThanOrEqual

 R_LessThan

 R_GreaterThanOrEqual

 R_GreaterThan

 R_Equals

 Odd

 I_LessThanOrEqualE

 I_LessThan

 I_GreaterThanOrEqual

 I_GreaterThan

 I_Equals

 Even

Arithmetic

 Increment

 Decrement

 I_add

 I_subtract

 Imult

 I_mult

 I_div

 I_divprotect

 Imod

 I_mod

 Iabs

 Imin

 Imax

 Ichs

 Igain

 R_add

 R_subtract

 R_mult

 R_div

 R_divprotect

 Rsqrt

 Rabs

 Rmin

 Rmax

 Rchs

 Rgain

 sin_X

 cos_X

 tan_X

 ln_X

 exp_X

 X_powr_Iconst

 X_powr_Y

 five_input_expression

 one_input_expression_R

 one_input_expression_I

 Rlimiter

 Ilimiter

 Reciprocal

 General_Expression

Number_Generators

 UserCDF_RanGen

 UniformRangenParam

 UniformRangen

 U_0_to_1_RanGen

 TStop

 TNow

 Rconst

 PoissonRangenParam

 PoissonRangen

 N01_Rangen

 NormalRangen

 NormalRangenParam

 IU_Parem

 IU_NE_C

 IU_MinMax_Param

 IU_MinMax

 IU

 Iconst

 GammaRangenParam

 GammaRangen

 ExponRanGenParam

 ExponRanGen

 BinomialRangenParam

 BinomialRangen

Miscellaneous

 TimeBetweenTriggers

 SystemCall

 ServiceSetup

 Print_message

 PrintEnvelope

 Print_real

 Print_int

 Dijkstra

 Central_Utilities

 Ack_Setup

Memory

 WriteMemory

 RealLocalMem

 ReadMemory

 MultipleBuffers

 Mem_increment

 Mem_decrement

 LocalMem_wCopy

 LocalMemRef

 LocalMem

 IntLocalMemory

 ActiveReadMemory

Loops

 Real_Do_Param

 Real_Do

 Int_Do_Param

 Int_Do_1_N

 Int_Do_0_Nminus1

 Int_Do

Logical

 False

 True

 Nxor

 Xor

 Nor

 Nand

 Not

 Or

 And

Graphical_Interface

 Slider_box

 PromptInt

Delays

 FixedProcDelay

 FixedAbsDelay

 AbsDelay

Data_Structure_Access

 TypeSwitch

 SelectField

 MakeRealDS

 InsertTNow

 InsertMultipleFieldParams

 InsertMultipleTNow

 InsertFieldTNow

 InsertFieldParam

 InsertField

 Declare_DS

 Create_DS

 Coerce_DS

Data_Structure_Operations

 TypeOf

 TypeConst

 TypeCompatible

 Tequals

 Split_wDelay

 Split3

 Split

 Sink

 Junction

 Join

 Copy2

 CopyDS_wDelay

 CopyDS

Library Configuration

General Blocks based simulations
generally utilize several libraries

All.sim contains the basic
elements (devices) of the General
Blocks library.

Library.sim contains information
to group the All.sim models into
manageable hierarchical groups

One or more local libraries,
containing module level and
sometimes device level models,
are generally referenced

The User's simulation model will
reference these libraries

All.sim

Special_Model.sim

Library.sim

Parameters.sim

My_System_Model.sim

General Blocks (GB) Files

 Library.sim is used to organize the models into logical
groupings for display and access by the CSIM gui

 All.sim contains the detailed implementation code for all
of the models in the distributed GB library

 data_structs.txt contains the definitions for all compound
data structures (message definitions) that will be used in
simulation

 All simulations will require an All.sim and a
data_structs.txt; Library.sim is optional (although very
useful).

 task_table.dat is required for simulations which require
the Admin model

 CSIM will provide additional object files.

Excerpts from Library.sim
 %include $CSIM_ROOT/model_libs/general_blocks/All.sim

 <DEFINE_LIBRARY> Counters
 <MODEL> UpDownCounterChangeValue </MODEL>
 <MODEL> UpDownCounter </MODEL>
 <MODEL> SimpleCounter </MODEL>
 <MODEL> Int_Accumulator </MODEL>
 <MODEL> GlobalCount </MODEL>
 <MODEL> Counter </MODEL>
 <MODEL> CircularCounter </MODEL>
 <MODEL> Accumulator </MODEL>
 </DEFINE_LIBRARY>

 <DEFINE_LIBRARY> Conversions
 <MODEL> Truncate </MODEL>
 <MODEL> Round </MODEL>
 <MODEL> Int_to_Real </MODEL>
 </DEFINE_LIBRARY>

 <DEFINE_LIBRARY> Comparison
 <MODEL> StringEqualsParam </MODEL>
 <MODEL> Set_Equals </MODEL>
 <MODEL> R_LessThanOrEqual </MODEL>
 <MODEL> R_LessThan </MODEL>
 <MODEL> R_GreaterThanOrEqual </MODEL>
 <MODEL> R_GreaterThan </MODEL>
 <MODEL> R_Equals </MODEL>
 <MODEL> Odd </MODEL>
 <MODEL> I_LessThanOrEqualE </MODEL>
 <MODEL> I_LessThan </MODEL>
 <MODEL> I_GreaterThanOrEqual </MODEL>
 <MODEL> I_GreaterThan </MODEL>
 <MODEL> I_Equals </MODEL>
 <MODEL> Even </MODEL>
 </DEFINE_LIBRARY>

 <DEFINE_LIBRARY> Plot_Generation
 <MODEL> BuildPlot_Ytime </MODEL>
 <MODEL> BuildPlot_Yonly </MODEL>
 <MODEL> BuildPlot_Y </MODEL>
 <MODEL> BuildPlot_XY </MODEL>
 <MODEL> BuildPlot </MODEL>
 <MODEL> BuildHistogram </MODEL>
 </DEFINE_LIBRARY>

 <DEFINE_LIBRARY> Number_Generators
 <MODEL> UserCDF_RanGen </MODEL>
 <MODEL> UniformRangenParam </MODEL>
 <MODEL> UniformRangen </MODEL>
 <MODEL> U_0_to_1_RanGen </MODEL>
 <MODEL> TStop </MODEL>
 <MODEL> TNow </MODEL>
 <MODEL> Rconst </MODEL>
 <MODEL> PoissonRangenParam </MODEL>
 <MODEL> PoissonRangen </MODEL>
 <MODEL> N01_Rangen </MODEL>
 <MODEL> NormalRangen </MODEL>
 <MODEL> NormalRangenParam </MODEL>
 <MODEL> IU_Parem </MODEL>
 <MODEL> IU_NE_C </MODEL>
 <MODEL> IU_MinMax_Param </MODEL>
 <MODEL> IU_MinMax </MODEL>
 <MODEL> IU </MODEL>
 <MODEL> Iconst </MODEL>
 <MODEL> GammaRangenParam </MODEL>
 <MODEL> GammaRangen </MODEL>
 <MODEL> ExponRanGenParam </MODEL>
 <MODEL> ExponRanGen </MODEL>
 <MODEL> BinomialRangenParam </MODEL>
 <MODEL> BinomialRangen </MODEL>
 </DEFINE_LIBRARY>

Example Model from All.sim
DEFINE_DEVICE_TYPE: R_add
 PORT_LIST(in1, in2, out);
 DOCUMENTATION:
 /**/
 /* The model adds the value of in1 and in2 */
 /* Input Ports */
 /* in1 Data Type: REAL */
 /* in2 Data Type: REAL */
 /* Output Ports */
 /* out Data Type: REAL */
 /* Parameters(none) */
 /**/
 END_DOCUMENTATION.
 DEFAULT_ICON($CSIM_MODEL_LIBS/general_blocks/Icons/2_1.ppm);

 DEFINE_THREAD: start_up`
 {
 Envelope *a, *b;
 float x, y; in len;

 while (1)
 {
 RECEIVE("in1", &a, &len);
 x = consume_real(a);
 RECEIVE("in2", &b, &len);
 y = consume_real(b);
 x = x + y;
 a = make_real_envelope(x);
 SEND("out", a, 1);
 }
 }
 END_DEFINE_THREAD.

END_DEFINE_DEVICE_TYPE.

General Blocks Messages
 Data structures are used to represent messages.
 In the General Blocks Library, there can be several types of

messages
 “Simple” data structures definitions are built-in

 Int, real, string
 Compound data structures are defined by the user in the
data_structs.txt file
 Assemblies of simple data structures

 Typically, data structures contain several fields:
 Some may contain information about the message, i.e. message

size, message priority, message creation time
 Others may be used to hold information about the system state,

probe data, calculation results, etc.
 Some General Blocks “devices” (i.e. Built-in models) operate

with compound data structures
 Others require specific simple data structures

 User models may require specific compound data structures

Example data_structs.txt

<DEFINE_DATA_STRUCTURES>

struct Throughput_Delay_DS
{
 real Mean_Delay=0
 real Var_Delay=0
 real Mean_Throughput=0
 real Var_Throughput=0
 int Nsamples
}

struct Basic_Statistic
{ real mean
 real variance
 real min
 real max
 int Nsamples=0
}

struct Timing_Packet
{ real Time_Created
 real Intermediate_Time
 real Time_Finished
 int Length
 int Type
}

struct Event_Data
{ real EVENT_START_TIME=0
 int EVENT_SEQUENCE_NUMBER=0
 int EVENT_TYPE_PARAMS_INDEX=0
 real PREV_LINKED_EVENT_START_TIME=0
 int PREV_LINKED_EVENT_SEQ_NUMBER=0
 int SOFT_RESET_COMMAND=0
 real EVENT_LENGTH_X_100_NSEC=1000
}

struct Application_Message_Transaction_DS
{ int Application_Message_Type_Code=0
 int Application_Message_Sequence_Number=0
 int Application_Message_Source=0
 int Application_Message_Destination=0
 int Application_Message_Size_Bytes=10
 int Application_Message_Priority=0
 real Application_Message_Create_Time=0
 real Application_Message_Start_XMIT_Time=0
 real Application_Message_Complete_XMIT_Time=0
 real Application_Message_RCV_Complete_Time=0
 real Application_Message_Destination_Time=0
 Event_Data Application_Message_User_Data
 gvec My_Vector_Data
}

</DEFINE_DATA_STRUCTURES>

Creating Legible Models

General “rules”
Limit the number of boxes to about 15
Orient the flow to run top to bottom
rather than left to right

Maximize use of the available canvas
 Jog wires to improve signal legibility

Example of Message Flows

<DEFINE_DATA_STRUCTURES>

struct CompuSys

{

 char MsgType=Heartbeat

 char StackACK

 char ACK=NoACK

 int NUMBER

 int MsgLENGTH

 int PRIORITY

 real CREATED

 real COMPLETED

 real MEAN

 real EARLIEST

 real LATEST

 real INTERMEDIATE

}

</DEFINE_DATA_STRUCTURES>

 The compound
data structure
used here is:

Data Structures Approach
 The Data_Type_Container

(Envelope) is the atomic
component of data structures
for the general blocks library

 Compound data structures are
built from linked lists of
Envelopes

 Organization of an Envelope:

struct Data_Type_Container

 {

 int kind, n1, n2; /* Type and dimension(s).

*/

 void *data;

 char *variable_name, *type_name;

 struct Data_Type_Container *next, *child;

 int ref_count;

 } *DATA_STRUCTURE_DEFINITIONS=0;

typedef struct Data_Type_Container Envelope;

kind

n1

n2

*data

*variable_name

*type_name

*next

*child

ref_count

Copying Messages

 There are two methods for copying (splitting)
messages (data structures)
 Pass a pointer (very fast)
 Make a deep copy of the data structure (can be

slow)
 Different models use one or the other approach
(i.e. Junction uses pointers, Copy_DS makes a
deep copy)

 Deep copying may be required if both copies of
the DS will be modified

 Pointer copying may be used if the copy is only
being used as a trigger (for example)

Resources, Servers and Probes

 The properties of a Resource (i.e. CPU)
are defined using a Set_Resource device

 Many (i.e. hundreds) of Servers (i.e.
Service_wPriority_Preemption) may be
mapped to a single Resource

 An individual Server is often used to
represent the execution of a particular
piece of software

 The correlation between resources,
servers and probes is set by the
ResourceID attribute

 Up to four Probes (as shown) may be
attached to a given Resource

 The Utilization probes output two
files:
 Batched and global utilization

 The other probes each output four
files:
 Batched and global average
 Batched and global peak

ResourceID = CPU1

Set_Preempt_Resource SR_Preempt_Server_Utilization_Probe

Service_wPriority_Preemption

Service_wPriority_Preemption

Service_wPriority_Preemption

SR_Preempt_Server_Occupancy_Probe

SR_Preempt_Server_Response_Probe

SR_Preempt_Server_Utilization_Per_Priority_Probe

ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1 ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1

ResourceID = CPU1

Examples
 “Histogram testcase”

 Objective:
 Need to run many Monte Carlo iterations of a simulation
 Need to collect latency statistics (min, mean and max) for four

point pairs (12 data points per iteration)
 Need to identify the global min, mean and max for each
 Need a histogram of the complete data set for one of the point

pairs
 Need to generate all required output fully automatically

 Approach:
 Use the Iterator to run iterations and collect min, mean and max
 Use a separate “simulation” to (redundantly) collect min, mean

and max
 Use another separate “simulation” to assemble a global

histogram
 Tie together with several scripts
 Demonstrate some “unusual” applications of a CSIM model

Block Diagram of “hist_test”

Build core

simulation
Build data

collector

Build and run

histogram generator

Run core

simulation

Run data

collector

Run Iterator

(each iteration)

Move

files
Move

files

Run N Times

Using General Blocks as a Visual Programming
Environment

This CSIM
“model”
reads four
files (scatter
plot data),
calculates the
min, mean
and max
values for
each, and
appends the
results onto
other files.

The Phases of Development

 Phase 1: Initial Model Development/Debug
 Graphical display can be extremely valuable in

facilitating verification and debug
 Phase 2: Data Generation and Analysis

 Usually, data generation (i.e. Monte Carlo) is most
effectively completed using automated, non-graphical
methods

 Analysis of the collected data usually utilizes graphical
methods (plotting, graphing, etc)

 Phase 3: Results presentations/marketing
 Presentations to management/customers can benefit

from attractive real-time graphical demos

Careful organization of the model in the beginning will
greatly benefit the eventual real-time graphical
demos

Starting A New Model
To Start a new General-Blocks model:
Include reference to GenBlocks model library

File / Import by Reference
$CSIM_MODEL_LIBS/general_blocks/Library.sim

Begin drawing block diagrams

The main file to include is Library.sim
 Lists and categorizes all models
 Includes All.sim

The All.sim file contains all the block models

Tricks to Speed Development
 Stepwise, “build a little, test a little” process
works best

 Recommended flow for a new model
 Import the required libraries and define all known

top level variables and macros
 Identify a small, well understood chunk of

functionality
 Implement, simulate and debug, and verify that the

simulation results are as expected
 Add another chunk; repeat

 Always work with the smallest model possible;
use stubs whenever appropriate

 Use pop ups, event probes, process timelines,
etc. to help verify connectivity

Running Simulations Faster
(Summary)

For the fastest simulation turnaround:
Run nongraphically
Compile with optimization (O2)
Execute from the local /tmp directory
Direct stdout and stderr into a file
Run from the fastest machine available

Running Simulations Faster (Details)

 Graphical simulations will run slower than
nongraphical

 A running graphical simulation will run faster
 while animation is turned off
 By increasing the time display increment (slightly)
 By directing terminal output to a file (stdout &

stderr)
 You can build a faster graphical simulation

 By turning off debugging (removing -g from gcc
cmd)

 By turning on optimization (adding -O2 to gcc cmd)
 By copying all files to the local /tmp directory and

executing there

Running Simulations Faster (Details)

 Efficient simulations are always faster than
inefficient simulations
 Don't simulate anything that doesn't need to be

simulated
 Build times are proportional to the number of devices

(boxes)
 Simulation time is proportional to the number of device-

events
 Don't simulate a longer period than necessary
 Don't simulate unnecessary details
 Extraneous devices, inefficiently implemented

models, etc. slow things down proportionately

ugui
 Ugui is a tool developed to

simplify the display of
multi-file xgraph plots (an
xgraph front end)

 Up to 16 files (data sets)
may be combined into a
single plot

 Each data set may have
individual:
 Colors
 Line types
 Point shapes
 X and/or y shifts
 X and/or Y scale factors

 Text and/or legend files can
be included

Required Files
Files required locally for initial build:

 yourSimFile.sim, data_structs.txt, and (for now)
soc_lib.c
 The Library.sim and/or All.sim files are referenced from

$CSIM_ROOT/model_libs/general_blocks
 Controlled local library files (i.e. IMA_Lib.sim) are

referenced from their repositories
Build-created files

 sim.exe and top_tab.dat are required
 out.c and netinfo are not required
 INTERMED*.csim files indicate a problem

Some models require input data files
 Control_Signal_Generator, Arbitrary_PulseTrain

Required Files (cont)

Ancillary tool-related files
xgraph

 Output data files from CSIM (*.dat)
 Optional annotations/labeling data (title.doc)

 tlpp (tlpp_gui)
 EventHist.dat, tlpp.com

ugui
 Setups saved in a *.raw file
 Generates an xgraph_plot.com file

A More Complex Example
Consider the drawn

distributed system
A Sensor and two other

subsystems are attached to
a Core Switch

The Core Switch connects
to four Edge Switches

Each Edge Switch connects
to a number of Nodes

We are interested in the
Processor Utilization,
Latencies and other
performance metrics

What do the Multi Core and
Limited Threads Models do
for us in analyzing this
system?

Sensor

SS1

SS2

C
o
r
e

E
d
g
e

1

Node1

Node2

Node3

Edge 4 Edge 2Edge 3

Node6 Node5 Node4

Example System
Top Level
Block
Diagram

Details of Node_2

Details of Node_2_A_Block

Detail of A2-A1a-1

Router Attribute Menus

Application Attribute Menus

New Models

A New Capability in General Blocks-based
modeling

 Models can be Dynamic and Self Configuring
Models can more accurately represent the actual
behavior of networks

Batcher/Unbatcher Models

• Generic_Batcher and Generic_UnBatcher
–Developed to extend and simplify the
GenericVector set of models (GVCreate, GVLen,
Access_GVector, Setup_GVElem)

• Typically used to represent a set of small
messages combined into a single large
message

• Generic_Batcher combines messages
• Generic_UnBatcher separates messages
• Enables accurate measurement of end to
end latencies

Admin Model
 The Admin is a scheduler, oriented to distributing

periodic tasks among a group of processors in a
networked environment:

 Operation:
 A message, containing a task name, is sent to the Admin to

request initiation of the task. The “tasks” are typically
comparable to a sequence diagram.

 The admin uses the specified algorithm (four are currently
supported) to assign the task to a processor. It updates its
status table.

 The admin sends a message to the assigned processor to
notify it to accept a task of the specified type and ID

 The processor interprets the message and starts the task.
 At the completion of a task, the processor sends a message

to the Admin to report the task completion.
 The Admin updates its status table.

Admin Task Assignment

A file (task_table.dat) defines:
 Task names, processor names, scheduling
algorithms and maximum task loading for each
processor

An example task table:

 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6

tsk1 fill_u 8 7 0 0 7 8

tsk2 fill_d 5 0 0 0 0 5

tsk3 u_task 3 0 4 4 0 3

tsk4 u_all 5 2 6 6 2 5

Sender/Receiver

The Sender and Receiver models use
named synchrons to “wirelessly” send data
structures between points

One to one, one to many, many to one and
many to many configurations can be
supported

Typically used to distribute control signals,
alarms and triggers

Router Model
 Router has 16 bidirectional ports

 Flexible specification of routing rules, i.e.
 route_24_50_20 = p5
 route_24_50_20_7 = p1
 route_DEFAULT = p2
 route_3_2_1_1_0_3_7up = p1
 route_cabinet2_card3_cpu4 = p4
 route_24_50_F = p3

 Supports multicast publish, subscribe
 multi_w_x_y_z = p1_p2_p3_p4

 Supports dynamic subscribe/unsubscribe
 subscribe_24_50_20_6 = p6_p8
 unsubscribe_24_50_20_1 = p13_p14

 Can be used as data sorter/selector

Router Enablers

• Used to create routing info:
–Append_Route_List
–Append_String
–Num_to_String
–String_to_Num

• Used to split a full duplex link:
–PortConvert

Multi-Core Processor Model

Developed to more accurately represent
the execution of modern multi-core
processors
Previous approaches (scaling application execution

times) are inadequate
Initially represented as ideal
Currently, 1-16 cores can be represented
Recently upgraded to include load-
dependent performance degradation

Speedup, as a function of active cores,
specified as a table, i.e., Speedup_2 = 1.5

Multi Core Model

There are several (relatively)
independent capabilities lumped under
the heading Multi Core Model
Multi Core Model (basic)
“Amdahl” Performance Degradation Capability
Limited Thread Capability
Multi-part Thread Capability
“CoreLocked” Capability

Multi Core Model (basic)

The basic Multi Core Model enables the
representation of multiple tasks executing
simultaneously on a processor

Model behavior:
Number of cores can be specified separately for
all processors (i.e. MaxNumTasks)

Any task can execute on any core
No performance degredation modeled

Multi Core Model (Amdahl)

The Amdahl model extends the basic model
with generic performance degredation

Not actually hard-wired to Amdahl's model
The speedup behavior is specified in a
table-like set of attributes, i.e., A80 is:
Speedup_2 = 1.67
Speedup_3 = 2.14
Speedup_4 = 2.5

Model behavior:

Limited Thread Model
The Limited Thread is an extension to the basic model
The Multi Core model by itself does not specifically model software

which is single threaded or otherwise limited
Handled indirectly through the specification of Speedup values

If information regarding software limitations or system configuration
are available, the Limited Thread Model can be used to specifically
represent single threaded or otherwise limited threaded software

The Multi Core Model and Limited Thread model are independent
Operation of Limited Threads (LT)

Software which is limited is tagged with a set of attributes
When a message is received to initiate an execution, tags and

status are checked; LTs may span multiple blocks
If this LT is not active, execution is started and the Active tag is

set
If this LT is active, and this message does not represent the

Active thread, the incoming message is queued; each identified
LT has its own queue independent of all other queues

If this message represents the Active thread, it is started
When a thread exits, the Active tag is reset and the next thread

is released

Core Locked Model

• The Core Locked model enables the
representation of threads (tasks, applications)
that execute only on specific core(s)

• Any thread can be specified to execute on any
or all of the available cores

• Specification of a thread (example):
– NumLimitThrds = 7
– Thread_Name_1 = DEF
– Max_Threads_1 = 1
– Max_Thrd_Prio_1 = 3
– Thrd_Map_1 = "1 3 4"

Simple Example of Multi Core
and Limited Thread Operation

• This simple model will
illustrate the behavior.

• Four identical sequences
of tasks are indicated by
the columns of six
colored boxes.

• Boxes of the same color
(row) are in the same LT
group

• Each column begins
execution quickly (0.01
milliseconds) after the
column to its left.

Single Core Execution

• In the case of a
Single Core, the task
execution is fully
sequential, from
Block1 through
Block24.

• The last block
completes execution
at T=4.8 seconds

0 1 2 3 4 5

/Block24
/Block23
/Block22
/Block21
/Block20
/Block19
/Block18
/Block17
/Block16
/Block15
/Block14
/Block13
/Block12
/Block11
/Block10
/Block9
/Block8
/Block7
/Block6
/Block5
/Block4
/Block3
/Block2
/Block1

Processing Time-Line Plot – Single Core

Time (seconds)

Label

Ideal Four Core Execution

• In the case of the
Ideal Four Core, the
task execution is
fully parallel

• The last block
completes
execution at T=1.2
seconds

0 1 2 3 4 5

/Block24
/Block23
/Block22
/Block21
/Block20
/Block19
/Block18
/Block17
/Block16
/Block15
/Block14
/Block13
/Block12
/Block11
/Block10
/Block9
/Block8
/Block7
/Block6
/Block5
/Block4
/Block3
/Block2
/Block1

Processing Time-Line Plot - Four Core Ideal

Time (seconds)

Lab
el

Four Core, Amdahl = 0.8
Execution

• In the Four Core, Amdahl
0.8 case, the task
execution is fully parallel

• The Amdahl slowdown is
apparent

• The last block completes
execution at
- Speedup_4 = 2.5 for

Amdahl 0.8, 4 core
- T=4.8/2.5 seconds
- T=1.92 seconds

0 1 2 3 4 5

/Block24
/Block23

/Block20

/Block22

/Block19

/Block16

/Block21

/Block18

/Block15

/Block12

/Block17

/Block14

/Block11

/Block8

/Block13

/Block10

/Block7

/Block9

/Block6
/Block5
/Block4
/Block3
/Block2
/Block1

Processing Time-Line Plot - One Limited Thread

Time (seconds)

Label

One Limited Thread Execution

0 1 2 3 4 5

/Block24
/Block23

/Block20

/Block22

/Block19

/Block16

/Block21

/Block18

/Block15

/Block12

/Block17

/Block14

/Block11

/Block8

/Block13

/Block10

/Block7

/Block9

/Block6
/Block5
/Block4
/Block3
/Block2
/Block1

Processing Time-Line Plot - One Limited Thread

Time (seconds)

Label

• In the One Limited
Thread case, the second
row of tasks, Block5
through Block8 (orange
boxes) represent single
threaded software

• Amdahl slowdown is
turned off

• The last block completes
execution at 1.8
seconds`

One Limited Thread, Amdahl 0.8 Execution

• In the One Limited
Thread, Amdahl 0.8
case, the second row
of tasks, Block5
through Block8
(orange boxes)
represent single
threaded software

• Amdahl slowdown is
set for Amdahl 0.8

• Note the load
dependent dilation

• The last block
completes execution
at 2.4 seconds 0 1 2 3 4 5

/Block24
/Block23

/Block20

/Block22

/Block19

/Block16

/Block21

/Block18

/Block15

/Block12

/Block17

/Block14

/Block11

/Block8

/Block13

/Block10

/Block7

/Block9

/Block6
/Block5
/Block4
/Block3
/Block2
/Block1

Processing Time-Line Plot - One Limited Thread, Amdahl 0.8

Time (seconds)

Labe
l

Service Models Dependencies

Service_wPriority_Preemption
2068 SLOC

13 CSIM threads
10 subroutines

Set_Preempt_Resource
417 SLOC

2 CSIM threads

SR_Preempt_Server_Occupancy_Probe
222 SLOC

3 CSIM threads
4 output files

ProcessTimeLineProbe
120 SLOC

3 CSIM threads
1 output files

SR_Preempt_Server_Response_Probe
186 SLOC

3 CSIM threads
4 output files

SR_Preempt_Server_Utilization_Probe
257 SLOC

5 CSIM threads
2 output files

SR_Preempt_Server_Utilization_Per_Priority_Probe
356 SLOC

3 CSIM threads
8 output files

Data_Type_Definitions

13 data structs

MPGraph
*

General Utilities
162 SLOC
2 utilities

SR_Server_Occupancy_Probe

Service_wPriority

Set_Resource

SR_Server_Response_Probe

SR_Server_Utilization_Probe

SR_Server_Utilization_Per_Priority_Probe

Service_wRoundRobin
770 SLOC

*

Set_QResource
et al

SPP Model Capabilities

• Original
• Priority
• Preemption
• Utilization
• Utilization Per Priority
• Occupancy
• Response

• Added
• Process Timeline
• Self Test
• Multi Core (ideal)
• “Amdahl” Degradation
• Limited Thread
• Limited Thread Continuation
• Core Locking
• Utilization Per Core
• Utilization By Thread
• Utilization By Core
• Thread Queue Occupancy

Recent CSIM Evolution

CSIM Kernel

Core Models

General Blocks

Human Factors

RF Propagation
Winframe 3D

'96 '00 '04 '08 '12 '16

Scheduler Dynamic
Scheduler

IteratorTools

Schedulers

XML

Viewers

Model Libraries

TimeLine

Xgraph

Router
NumUtils

Digital Logic

Analog

Vehicles
Platforms

Terrain

XYZ

SolidXYZ

OTK
Scenario

Entry Tool
Auto

Optimize

Life Cycle

Spatial
Services

GUI

HLA/MSI

LAN/WANWireless

XYZ2WF

Agent
Scheduler

Comms Scheduler

Contour

ContentionView

Map
Creator

VHDL

Multi Core

General Blocks Data Flow

GUI

CSIM

tlpp_gui

My.sim Icon_libs

Library.sim

EventHist.dat “Vector.dat” log, etc.

sim.exe

xgraphEventHist.tln

gui_setups

out.c

gcc

All.sim

top_tab.datnetinfo

Other libs

Other Tools

kern.c

Other libs

Generic Development Flow

Construct model
Build simulation
Execute simulation
Review output data

GUI

CSIM

My.sim

output

sim.exe

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

